索引

  • Hw11:验证商模是模。
  • Hw12: R R R是一个含幺环,证明
    • 1) K e r ( f ) Ker\left( f \right) Ker(f) R − R- R模,是 M M M的子模;
    • 2) Im ⁡ ( f ) \operatorname{Im}\left( f \right) Im(f) R − R- R模,是 M ′ M' M的子模;
  • Hw13:陈述模态射基本定理。
  • Hw14:证明 F r a c ( R ) Frac\left( R \right) Frac(R)是一个域,且 R R R F r a c ( R ) Frac\left( R \right) Frac(R)的子环。
  • Hw15:当含幺交换环 R R R是整环时有 deg ⁡ ( f g ) = deg ⁡ ( f ) + deg ⁡ ( g ) \deg \left( fg \right)=\deg \left( f \right)+\deg \left( g \right) deg(fg)=deg(f)+deg(g)
  • Hw16:存在 { η 1 , . . . , η n } ⊆ R [ x 1 , x 2 , . . . , x n ] S n \left\{ {{\eta }_{1}},...,{{\eta }_{n}} \right\}\subseteq R{{\left[ {{x}_{1}},{{x}_{2}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} {η1,...,ηn}R[x1,x2,...,xn]Sn 满足 η i ≠ r σ j {{\eta }_{i}}\ne r{{\sigma }_{j}} ηi=rσj, ∀ r ∈ R ,   ∀ i , j ∈ { 1 , 2 , . . . , n } \forall r\in R,\text{ }\forall i,j\in \left\{ 1,2,...,n \right\} rR, i,j{1,2,...,n},且 R [ η 1 , . . . , η n ] = R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]=R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]=R[x1,...,xn]Sn.
  • Hw17:证明 Z \mathbb{Z} Z P I D PID PID
  • Hw18:找一个 Z \mathbb{Z} Z的素理想但同时不是极大理想。
  • Hw19:证明 7 ∈ Z [ − 5 ] 7\in \mathbb{Z}\left[ \sqrt[{}]{-5} \right] 7Z[5 ]是不可约元素。
  • Hw20:证明若存在 f : K 1 ↦ K 2 f:{{K}_{1}}\mapsto {{K}_{2}} f:K1K2是一个域态射,则 c h a r ( K 1 ) = c h a r ( K 2 ) char\left( {{K}_{1}} \right)=char\left( {{K}_{2}} \right) char(K1)=char(K2)

Hw11:验证商模是模。

证明:
Proof:
  Let ( M , + ) \left( M,+ \right) (M,+) be one commutative group, ( M , φ ) \left( M,\varphi \right) (M,φ) is an R-module, N < M N<M N<M & ( N , φ ) \left( N,\varphi \right) (N,φ) is a submodule of ( M , φ ) \left( M,\varphi \right) (M,φ), in which φ : R ⊙ M → M r ⊙ m 1 → m 2 \varphi :\begin{matrix} R & \odot & M & \to & M \\ r & \odot & {{m}_{1}} & \to & {{m}_{2}} \\ \end{matrix} φ:RrMm1Mm2. Consider ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ), in which M / N = { m ‾ = m + N ∣ m ∈ N } M/N=\left\{ \left. \overline{m}=m+N \right|m\in N \right\} M/N={m=m+NmN} and ψ ≅ φ : R ∗ M / N → M / N r ∗ m 1 ‾ → m 2 ‾ \psi \cong \varphi :\begin{matrix} R & * & M/N & \to & M/N \\ r & * & \overline{{{m}_{1}}} & \to & \overline{{{m}_{2}}} \\ \end{matrix} ψφ:RrM/Nm1M/Nm2.
  First we prove that ( M / N , + ) \left( M/N,+ \right) (M/N,+) is a commutative group.
Commutativity law: ∀ m 1 , m 2 ∈ M \forall {{m}_{1}},{{m}_{2}}\in M m1,m2M,
{ ( m 1 + N ) + ( m 2 + N ) = ( m 1 + m 2 ) + ( N + N ) = ( m 1 + m 2 ) + N ( m 2 + N ) + ( m 1 + N ) = ( m 2 + m 1 ) + ( N + N ) = ( m 2 + m 1 ) + N m 1 + m 2 = m 2 + m 1 \left\{ \begin{aligned} & \left( {{m}_{1}}+N \right)+\left( {{m}_{2}}+N \right)=\left( {{m}_{1}}+{{m}_{2}} \right)+\left( N+N \right)=\left( {{m}_{1}}+{{m}_{2}} \right)+N \\ & \left( {{m}_{2}}+N \right)+\left( {{m}_{1}}+N \right)=\left( {{m}_{2}}+{{m}_{1}} \right)+\left( N+N \right)=\left( {{m}_{2}}+{{m}_{1}} \right)+N \\ & {{m}_{1}}+{{m}_{2}}={{m}_{2}}+{{m}_{1}} \\ \end{aligned} \right. (m1+N)+(m2+N)=(m1+m2)+(N+N)=(m1+m2)+N(m2+N)+(m1+N)=(m2+m1)+(N+N)=(m2+m1)+Nm1+m2=m2+m1
⇒ m 1 ‾ + m 2 ‾ = m 2 ‾ + m 1 ‾ \Rightarrow \overline{{{m}_{1}}}+\overline{{{m}_{2}}}=\overline{{{m}_{2}}}+\overline{{{m}_{1}}} m1+m2=m2+m1.
Association law: ∀ m 1 , m 2 , m 3 ∈ M \forall {{m}_{1}},{{m}_{2}},{{m}_{3}}\in M m1,m2,m3M,
( m 1 ‾ + m 2 ‾ ) + m 3 ‾ = m 1 ‾ + ( m 2 ‾ + m 3 ‾ ) = ( m 1 + m 2 + m 3 ) + N \left( \overline{{{m}_{1}}}+\overline{{{m}_{2}}} \right)+\overline{{{m}_{3}}}=\overline{{{m}_{1}}}+\left( \overline{{{m}_{2}}}+\overline{{{m}_{3}}} \right)=\left( {{m}_{1}}+{{m}_{2}}+{{m}_{3}} \right)+N (m1+m2)+m3=m1+(m2+m3)=(m1+m2+m3)+N
Unit:: 0 ‾ = 0 + N = N \overline{0}=0+N=N 0=0+N=N.
Reversibility: ∀ m ∈ M \forall m\in M mM, ∃ ( − m ) ∈ M \exists \left( -m \right)\in M (m)M
m ‾ + ( − m ) ‾ = ( m + N ) + ( − m + N ) = ( m − m ) + N = N = 0 ‾ \overline{m}+\overline{\left( -m \right)}=\left( m+N \right)+\left( -m+N \right)=\left( m-m \right)+N=N=\overline{0} m+(m)=(m+N)+(m+N)=(mm)+N=N=0
And since ψ ≅ φ \psi \cong \varphi ψφ, it is obvious that ( M / N , ψ ) \left( M/N,\psi \right) (M/N,ψ) is an R-module.

Hw12: R R R是一个含幺环,证明

1) K e r ( f ) Ker\left( f \right) Ker(f) R − R- R模,是 M M M的子模;

证明:
需要证明两点——
K e r ( f ) < M Ker\left( f \right)<M Ker(f)<M
首先有 K e r ( f ) ⊆ M Ker\left( f \right)\subseteq M Ker(f)M
封闭性: ∀ x 1 , x 2 ∈ K e r ( f ) ,   f ( x 1 + x 2 ) = f ( x 1 ) + f ( x 2 ) = 0 + 0 = 0   ⇒   x 1 + x 2 ∈ K e r ( f ) \forall {{x}_{1}},{{x}_{2}}\in Ker\left( f \right),\text{ }f\left( {{x}_{1}}+{{x}_{2}} \right)=f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)=0+0=0\text{ }\Rightarrow \text{ }{{x}_{1}}+{{x}_{2}}\in Ker\left( f \right) x1,x2Ker(f), f(x1+x2)=f(x1)+f(x2)=0+0=0  x1+x2Ker(f)
结合律:继承 M M M的加法结合律。
单位元:由于 f ( 0 ) = 0 f\left( 0 \right)=0 f(0)=0 0 ∈ K e r ( f ) 0\in Ker\left( f \right) 0Ker(f),作为 M M M的单位元, 0 0 0也是 K e r ( f ) Ker\left( f \right) Ker(f)的单位元。
可逆性: ∀ x ∈ K e r ( f ) \forall x\in Ker\left( f \right) xKer(f),有 f ( 0 ) = f ( − x + x ) = f ( − x ) + f ( x ) = f ( − x ) + 0 = 0 ⇒ f ( − x ) = 0 ⇒ − x ∈ K e r ( f ) f\left( 0 \right)=f\left( -x+x \right)=f\left( -x \right)+f\left( x \right)=f\left( -x \right)+0=0\Rightarrow f\left( -x \right)=0\Rightarrow -x\in Ker\left( f \right) f(0)=f(x+x)=f(x)+f(x)=f(x)+0=0f(x)=0xKer(f).
R [ K e r ( f ) ] ⊆ K e r ( f ) R\left[ Ker\left( f \right) \right]\subseteq Ker\left( f \right) R[Ker(f)]Ker(f)
∀ x ∈ K e r ( f ) \forall x\in Ker\left( f \right) xKer(f) ∀ r ∈ R \forall r\in R rR,考虑
f ( r x ) = r f ( x ) = r × 0 = 0   ⇒   r x ∈ K e r ( f )   ⇒   R [ K e r ( f ) ] ⊆ K e r ( f ) f\left( rx \right)=rf\left( x \right)=r\times 0=0\text{ }\Rightarrow \text{ }rx\in Ker\left( f \right)\text{ }\Rightarrow \text{ }R\left[ Ker\left( f \right) \right]\subseteq Ker\left( f \right) f(rx)=rf(x)=r×0=0  rxKer(f)  R[Ker(f)]Ker(f)

2) Im ⁡ ( f ) \operatorname{Im}\left( f \right) Im(f) R − R- R模,是 M ′ M' M的子模;

证明:
需要证明两点——
Im ⁡ ( f ) < M ′ \operatorname{Im}\left( f \right)<M' Im(f)<M
首先有 Im ⁡ ( f ) ⊆ M ′ \operatorname{Im}\left( f \right)\subseteq M' Im(f)M.
封闭性: ∀ y 1 , y 2 ∈ Im ⁡ ( f ) \forall {{y}_{1}},{{y}_{2}}\in \operatorname{Im}\left( f \right) y1,y2Im(f) ∃ x 1 , x 2 ∈ M \exists {{x}_{1}},{{x}_{2}}\in M x1,x2M,使得
f ( x 1 ) = y 1   &   f ( x 2 ) = y 2   ⇒   f ( x 1 + x 2 ) = f ( x 1 ) + f ( x 2 ) = y 1 + y 2   ⇒   y 1 + y 2 ∈ Im ⁡ ( f ) f\left( {{x}_{1}} \right)={{y}_{1}}\text{ }\And \text{ }f\left( {{x}_{2}} \right)={{y}_{2}}\text{ }\Rightarrow \text{ }f\left( {{x}_{1}}+{{x}_{2}} \right)=f\left( {{x}_{1}} \right)+f\left( {{x}_{2}} \right)={{y}_{1}}+{{y}_{2}}\text{ }\Rightarrow \text{ }{{y}_{1}}+{{y}_{2}}\in \operatorname{Im}\left( f \right) f(x1)=y1 & f(x2)=y2  f(x1+x2)=f(x1)+f(x2)=y1+y2  y1+y2Im(f)
结合律:继承 M ′ M' M的结合律。
单位元: f ( 0 ) = 0 f\left( 0 \right)=0 f(0)=0 0 ∈ Im ⁡ ( f ) 0\in \operatorname{Im}\left( f \right) 0Im(f)也是 Im ⁡ ( f ) \operatorname{Im}\left( f \right) Im(f)的单位元。
可逆性: ∀ y ∈ Im ⁡ ( f ) ,   ∃ x ∈ M ,   s . t .   f ( x ) = y \forall y\in \operatorname{Im}\left( f \right),\text{ }\exists x\in M,\text{ }s.t.\text{ }f\left( x \right)=y yIm(f), xM, s.t. f(x)=y。考虑 − x ∈ M -x\in M xM f ( − x ) f\left( -x \right) f(x) f ( 0 ) = f ( x − x ) = f ( x ) + f ( − x ) = y + f ( − x ) = 0 f\left( 0 \right)=f\left( x-x \right)=f\left( x \right)+f\left( -x \right)=y+f\left( -x \right)=0 f(0)=f(xx)=f(x)+f(x)=y+f(x)=0
⇒ f ( − x ) = − y ∈ Im ⁡ ( f ) \Rightarrow f\left( -x \right)=-y\in \operatorname{Im}\left( f \right) f(x)=yIm(f).
R [ Im ⁡ ( f ) ] ⊆ Im ⁡ ( f ) R\left[ \operatorname{Im}\left( f \right) \right]\subseteq \operatorname{Im}\left( f \right) R[Im(f)]Im(f)
∀ y ∈ Im ⁡ ( f ) ,   ∃ x ∈ M ,   s . t .   f ( x ) = y \forall y\in \operatorname{Im}\left( f \right),\text{ }\exists x\in M,\text{ }s.t.\text{ }f\left( x \right)=y yIm(f), xM, s.t. f(x)=y ∀ r ∈ R \forall r\in R rR,有 r y = r f ( x ) = f ( r x ) ,   r x ∈ M ry=rf\left( x \right)=f\left( rx \right),\text{ }rx\in M ry=rf(x)=f(rx), rxM,所以有 r y ∈ Im ⁡ ( f ) ry\in \operatorname{Im}\left( f \right) ryIm(f),所以 R [ Im ⁡ ( f ) ] ⊆ Im ⁡ ( f ) R\left[ \operatorname{Im}\left( f \right) \right]\subseteq \operatorname{Im}\left( f \right) R[Im(f)]Im(f)

Hw13:陈述模态射基本定理。

  1. f : M → M ′ f:M\to M' f:MM是一个模态射,则 Ker ( f ) ◃ M \text{Ker}\left( f \right)\triangleleft M Ker(f)M,且 ∃ f ‾ : M / Ker ( f ) → M ′ \exists \overline{f}:M/\text{Ker}\left( f \right)\to M' f:M/Ker(f)M,使得以下的图交换:

    注:
    其中映射 P P P可取 P : M → M / K e r ( f ) m → m K e r ( f ) P:\begin{matrix} M & \to & M/Ker\left( f \right) \\ m & \to & mKer\left( f \right) \\ \end{matrix} P:MmM/Ker(f)mKer(f) f ‾ \overline{f} f 可取 f ‾ : M / K e r ( f ) → M ′ m K e r ( f ) → f ( m ) \overline{f}:\begin{matrix} M/Ker\left( f \right) & \to & M' \\ mKer\left( f \right) & \to & f\left( m \right) \\ \end{matrix} f:M/Ker(f)mKer(f)Mf(m)
    由于 K e r ( f ) ◃ M Ker\left( f \right)\triangleleft M Ker(f)M,所以 M / K e r ( f ) M/Ker\left( f \right) M/Ker(f)是一个群,且在博客《群态射,环态射,域态射》中的“群态射例子”部分已证明 P P P也是一个群态射。
    此外 f ‾ \overline{f} f也是一个群态射,还存在群同构 M / K e r ( f ) ≅ Im ⁡ ( f ) ⊆ M ′ M/Ker\left( f \right)\cong \operatorname{Im}\left( f \right) \subseteq M' M/Ker(f)Im(f)M

  2. N ◃ M ,   S < M N\triangleleft M,\text{ }S<M NM, S<M,则 S N < M ,   S ⋂ N ◃ S SN<M,\text{ }S\bigcap N\triangleleft S SN<M, SNS,且: S N / N ≅ S / ( S ⋂ N ) SN/N\cong S/\left( S\bigcap N \right) SN/NS/(SN)(这里的 ≅ \cong 是存在群同构(双射群态射)的意思,下同);

  3. N ◃ M N\triangleleft M NM,则 M / N M/N M/N的所有(正规?)子群均形如 K / N K/N K/N ( N ◃ K < M ) \left( N\triangleleft K<M \right) (NK<M),且
    K / N ◃ M / N   ⇔   K ◃ M K/N\triangleleft M/N\text{ }\Leftrightarrow \text{ }K\triangleleft M K/NM/N  KM,此时我们有: ( M / N ) / ( K / N ) ≅ M / K \left( M/N \right)/\left( K/N \right)\cong M/K (M/N)/(K/N)M/K

Hw14:证明 F r a c ( R ) Frac\left( R \right) Frac(R)是一个域,且 R R R F r a c ( R ) Frac\left( R \right) Frac(R)的子环。

证明:
给定 R R R是一个交换整环,考虑结构 ( F r a c ( R ) , + , × ) \left( Frac\left( R \right),+,\times \right) (Frac(R),+,×),其中 +, × \text{+,}\times +,×分别定义如下
r 1 s 1 + r 2 s 2 = r 1 s 2 + r 2 s 1 s 1 s 2 \frac{{{r}_{1}}}{{{s}_{1}}}+\frac{{{r}_{2}}}{{{s}_{2}}}=\frac{{{r}_{1}}{{s}_{2}}+{{r}_{2}}{{s}_{1}}}{{{s}_{1}}{{s}_{2}}} s1r1+s2r2=s1s2r1s2+r2s1
r 1 s 1 × r 2 s 2 = r 1 r 2 s 1 s 2 \frac{{{r}_{1}}}{{{s}_{1}}}\times \frac{{{r}_{2}}}{{{s}_{2}}}=\frac{{{r}_{1}}{{r}_{2}}}{{{s}_{1}}{{s}_{2}}} s1r1×s2r2=s1s2r1r2
其中 r 1 , r 2 ∈ R ,   s 1 , s 2 ∈ R \ { 0 } {{r}_{1}},{{r}_{2}}\in R,\text{ }{{s}_{1}},{{s}_{2}}\in R\backslash \left\{ 0 \right\} r1,r2R, s1,s2R\{0}

  1. ( F r a c ( R ) , + ) \left( Frac\left( R \right),+ \right) (Frac(R),+)是交换群。
    加法封闭性: r 1 s 2 + r 2 s 1 ∈ R {{r}_{1}}{{s}_{2}}+{{r}_{2}}{{s}_{1}}\in R r1s2+r2s1R,且由于 R R R是整环, s 1 , s 2 ≠ 0 {{s}_{1}},{{s}_{2}}\ne 0 s1,s2=0,有 s 1 s 2 ≠ 0 {{s}_{1}}{{s}_{2}}\ne 0 s1s2=0。于是
    r 1 s 1 + r 2 s 2 = r 1 s 2 + r 2 s 1 s 1 s 2 ∈ F r a c ( R ) \frac{{{r}_{1}}}{{{s}_{1}}}+\frac{{{r}_{2}}}{{{s}_{2}}}=\frac{{{r}_{1}}{{s}_{2}}+{{r}_{2}}{{s}_{1}}}{{{s}_{1}}{{s}_{2}}}\in Frac\left( R \right) s1r1+s2r2=s1s2r1s2+r2s1Frac(R)
    加法结合律:
    ( r 1 s 1 + r 2 s 2 ) + r 3 s 3 = r 1 s 1 + ( r 2 s 2 + r 3 s 3 ) = r 1 s 2 s 3 + r 2 s 1 s 3 + r 3 s 1 s 2 s 1 s 2 s 3 \left( \frac{{{r}_{1}}}{{{s}_{1}}}+\frac{{{r}_{2}}}{{{s}_{2}}} \right)+\frac{{{r}_{3}}}{{{s}_{3}}}=\frac{{{r}_{1}}}{{{s}_{1}}}+\left( \frac{{{r}_{2}}}{{{s}_{2}}}+\frac{{{r}_{3}}}{{{s}_{3}}} \right)=\frac{{{r}_{1}}{{s}_{2}}{{s}_{3}}+{{r}_{2}}{{s}_{1}}{{s}_{3}}+{{r}_{3}}{{s}_{1}}{{s}_{2}}}{{{s}_{1}}{{s}_{2}}{{s}_{3}}} (s1r1+s2r2)+s3r3=s1r1+(s2r2+s3r3)=s1s2s3r1s2s3+r2s1s3+r3s1s2
    加法交换律:
    r 1 s 1 + r 2 s 2 = r 2 s 2 + r 1 s 1 = r 1 s 2 + r 2 s 1 s 1 s 2 \frac{{{r}_{1}}}{{{s}_{1}}}+\frac{{{r}_{2}}}{{{s}_{2}}}=\frac{{{r}_{2}}}{{{s}_{2}}}+\frac{{{r}_{1}}}{{{s}_{1}}}=\frac{{{r}_{1}}{{s}_{2}}+{{r}_{2}}{{s}_{1}}}{{{s}_{1}}{{s}_{2}}} s1r1+s2r2=s2r2+s1r1=s1s2r1s2+r2s1
    加法单位元: 0 = 0 s ,   ∀ s ∈ R \ { 0 } 0=\frac{0}{s},\text{ }\forall s\in R\backslash \left\{ 0 \right\} 0=s0, sR\{0}
    加法可逆性: ∀ r 1 s 1 ∈ F r a c ( R ) \forall \frac{{{r}_{1}}}{{{s}_{1}}}\in Frac\left( R \right) s1r1Frac(R),其加法逆元为 − r 1 s 1 \frac{-{{r}_{1}}}{{{s}_{1}}} s1r1
  2. ( F r a c ( R ) , × ) \left( Frac\left( R \right),\times \right) (Frac(R),×)是半群,且 ( F r a c ( R ) \ { 0 } , × ) \left( Frac\left( R \right)\backslash \left\{ 0 \right\},\times \right) (Frac(R)\{0},×)是交换群。
    运算封闭性: ∀ r 1 , r 2 ∈ R ,   s 1 , s 2 ∈ R \ { 0 } \forall {{r}_{1}},{{r}_{2}}\in R,\text{ }{{s}_{1}},{{s}_{2}}\in R\backslash \left\{ 0 \right\} r1,r2R, s1,s2R\{0} r 1 r 2 ∈ R ,   s 1 s 2 ∈ R \ { 0 } {{r}_{1}}{{r}_{2}}\in R,\text{ }{{s}_{1}}{{s}_{2}}\in R\backslash \left\{ 0 \right\} r1r2R, s1s2R\{0} r 1 s 1 × r 2 s 2 = r 1 r 2 s 1 s 2 ∈ F r a c ( R ) \frac{{{r}_{1}}}{{{s}_{1}}}\times \frac{{{r}_{2}}}{{{s}_{2}}}=\frac{{{r}_{1}}{{r}_{2}}}{{{s}_{1}}{{s}_{2}}}\in Frac\left( R \right) s1r1×s2r2=s1s2r1r2Frac(R)且当 r 1 ≠ 0 ,   r 2 ≠ 0 {{r}_{1}}\ne 0,\text{ }{{r}_{2}}\ne 0 r1=0, r2=0时有 r 1 r 2 s 1 s 2 ≠ 0 \frac{{{r}_{1}}{{r}_{2}}}{{{s}_{1}}{{s}_{2}}}\ne 0 s1s2r1r2=0
    结合律和交换律:继承 R R R的结合律和交换律。
    乘法单位元: 1 = s s ,   ∀ s ∈ R \ { 0 } 1=\frac{s}{s},\text{ }\forall s\in R\backslash \left\{ 0 \right\} 1=ss, sR\{0}
    可逆性: ∀ r 1 s 1 ∈ F r a c ( R ) ,   r 1 , s 1 ≠ 0 \forall \frac{{{r}_{1}}}{{{s}_{1}}}\in Frac\left( R \right),\text{ }{{r}_{1}},{{s}_{1}}\ne 0 s1r1Frac(R), r1,s1=0,其乘法逆元为 s 1 r 1 \frac{{{s}_{1}}}{{{r}_{1}}} r1s1
  3. 分配律显然也满足。

综上, F r a c ( R ) Frac\left( R \right) Frac(R)是域。
R R R里面的元素 r r r等价视作 r s 1 s 1 \frac{r{{s}_{1}}}{{{s}_{1}}} s1rs1 ∀ s 1 ∈ R \ { 0 } \forall {{s}_{1}}\in R\backslash \left\{ 0 \right\} s1R\{0},则易得 R ⊆ F r a c ( R ) R\subseteq Frac\left( R \right) RFrac(R)是子环。

Hw15:当含幺交换环 R R R是整环时有 deg ⁡ ( f g ) = deg ⁡ ( f ) + deg ⁡ ( g ) \deg \left( fg \right)=\deg \left( f \right)+\deg \left( g \right) deg(fg)=deg(f)+deg(g)

证明:
给定一个含幺交换环 ( R , + , × ) \left( R,+,\times \right) (R,+,×),设 f : = ∑ i = 0 a i x i f:=\sum\limits_{i=0}^{{}}{{{a}_{i}}{{x}^{i}}} f:=i=0aixi g : = ∑ j = 0 b j x j g:=\sum\limits_{j=0}^{{}}{{{b}_{j}}{{x}^{j}}} g:=j=0bjxj,令
G 1 = { x ∣ a x ≠ 0 } ,   G 2 = { y ∣ a y ≠ 0 } . {{G}_{1}}=\left\{ \left. x \right|{{a}_{x}}\ne 0 \right\},\text{ }{{G}_{2}}=\left\{ \left. y \right|{{a}_{y}}\ne 0 \right\}. G1={xax=0}, G2={yay=0}.

  1. G 1 ≠ ∅ & G 2 ≠ ∅ {{G}_{1}}\ne \varnothing \And {{G}_{2}}\ne \varnothing G1=&G2=,令 m = max ⁡ ( G 1 ) = deg ⁡ ( f ) ,   n = max ⁡ ( G 2 ) = deg ⁡ ( g ) m=\max \left( {{G}_{1}} \right)=\deg \left( f \right),\text{ }n=\max \left( {{G}_{2}} \right)=\deg \left( g \right) m=max(G1)=deg(f), n=max(G2)=deg(g),此时 f , g f,g f,g可写成
    f = ∑ i = 0 m a i x i ,   g = ∑ j = 0 n b j x j . f=\sum\limits_{i=0}^{m}{{{a}_{i}}{{x}^{i}}},\text{ }g=\sum\limits_{j=0}^{n}{{{b}_{j}}{{x}^{j}}}. f=i=0maixi, g=j=0nbjxj.
    ⇒ f g = ∑ i = 0 m ∑ j = 0 n a i b j x i + j = ∑ k = 0 m + n ( ∑ i + j = k a i b j ) x k \Rightarrow fg=\sum\limits_{i=0}^{m}{\sum\limits_{j=0}^{n}{{{a}_{i}}{{b}_{j}}{{x}^{i+j}}}}=\sum\limits_{k=0}^{m+n}{\left( \sum\limits_{i+j=k}^{{}}{{{a}_{i}}{{b}_{j}}} \right){{x}^{k}}} fg=i=0mj=0naibjxi+j=k=0m+n(i+j=kaibj)xk
    R R R是整环, a m , b n ∈ R ,   a m , b n ≠ 0 {{a}_{m}},{{b}_{n}}\in R,\text{ }{{a}_{m}},{{b}_{n}}\ne 0 am,bnR, am,bn=0 ⇒ a m b n ≠ 0 \Rightarrow {{a}_{m}}{{b}_{n}}\ne 0 ambn=0 ⇒ deg ⁡ ( f g ) = m + n \Rightarrow \deg \left( fg \right)=m+n deg(fg)=m+n
  2. G 1 = ∅   o r   G 2 = ∅ {{G}_{1}}=\varnothing \text{ }or\text{ }{{G}_{2}}=\varnothing G1= or G2=时,
    f g = 0 ⇒ deg ⁡ ( f g ) = − ∞ = 0 + ( − ∞ ) = − ∞ + 0 = − ∞ + ( − ∞ ) = deg ⁡ ( f ) + deg ⁡ ( g ) fg=0\Rightarrow \deg \left( fg \right)=-\infty =0+\left( -\infty \right)=-\infty +0=-\infty +\left( -\infty \right)=\deg \left( f \right)+\deg \left( g \right) fg=0deg(fg)==0+()=+0=+()=deg(f)+deg(g).

综上,结论得证。

Hw16:存在 { η 1 , . . . , η n } ⊆ R [ x 1 , x 2 , . . . , x n ] S n \left\{ {{\eta }_{1}},...,{{\eta }_{n}} \right\}\subseteq R{{\left[ {{x}_{1}},{{x}_{2}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} {η1,...,ηn}R[x1,x2,...,xn]Sn 满足 η i ≠ r σ j {{\eta }_{i}}\ne r{{\sigma }_{j}} ηi=rσj, ∀ r ∈ R ,   ∀ i , j ∈ { 1 , 2 , . . . , n } \forall r\in R,\text{ }\forall i,j\in \left\{ 1,2,...,n \right\} rR, i,j{1,2,...,n},且 R [ η 1 , . . . , η n ] = R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]=R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]=R[x1,...,xn]Sn.

  1. (构造方法一:适用于 ∀ n ∈ Z > 0 \forall n\in {{\mathbb{Z}}_{>0}} nZ>0)令 η i = σ i + r i j ,   ∀ r i j ∈ R \ { 0 } {{\eta }_{i}}={{\sigma }_{i}}+{{r}_{ij}},\text{ }\forall {{r}_{ij}}\in R\backslash \left\{ 0 \right\} ηi=σi+rij, rijR\{0}
    证明:
    ∀ n ∈ Z > 0 \forall n\in {{\mathbb{Z}}_{>0}} nZ>0,令 η i = σ i + r i j ,   ∀ r i j ∈ R \ { 0 } {{\eta }_{i}}={{\sigma }_{i}}+{{r}_{ij}},\text{ }\forall {{r}_{ij}}\in R\backslash \left\{ 0 \right\} ηi=σi+rij, rijR\{0},则有
    σ i = η i − r i j {{\sigma }_{i}}={{\eta }_{i}}-{{r}_{ij}} σi=ηirij
    ⇒ R [ x 1 , . . . , x n ] S n = R [ σ 1 , . . . , σ n ] ⊆ R [ η 1 , . . . , η n ] \Rightarrow R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}}=R\left[ {{\sigma }_{1}},...,{{\sigma }_{n}} \right]\subseteq R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right] R[x1,...,xn]Sn=R[σ1,...,σn]R[η1,...,ηn]
    ∀ g ( x 1 , . . . , x n ) = ∑ k = 0 n g k η k ∈ R [ η 1 , . . . , η n ] \forall g\left( {{x}_{1}},...,{{x}_{n}} \right)=\sum\limits_{k=0}^{n}{{{g}_{k}}{{\eta }_{k}}}\in R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right] g(x1,...,xn)=k=0ngkηkR[η1,...,ηn],其中 g k ∈ R {{g}_{k}}\in R gkR ∀ σ ∈ S n \forall \sigma \in {{S}_{n}} σSn,有
    σ ( g ) = σ ( ∑ k = 0 n g k η k ) = ∑ k = 0 n g k σ ( η k ) = ∑ k = 0 n g k η k = g   ⇒   g ∈ R [ x 1 , . . . , x n ] S n \sigma \left( g \right)=\sigma \left( \sum\limits_{k=0}^{n}{{{g}_{k}}{{\eta }_{k}}} \right)=\sum\limits_{k=0}^{n}{{{g}_{k}}\sigma \left( {{\eta }_{k}} \right)}=\sum\limits_{k=0}^{n}{{{g}_{k}}{{\eta }_{k}}}=g\text{ }\Rightarrow \text{ }g\in R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} σ(g)=σ(k=0ngkηk)=k=0ngkσ(ηk)=k=0ngkηk=g  gR[x1,...,xn]Sn
    从而有
    R [ η 1 , . . . , η n ] ⊆ R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]\subseteq R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]R[x1,...,xn]Sn
    所以有
    R [ η 1 , . . . , η n ] = R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]=R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]=R[x1,...,xn]Sn
    η i = σ i + r i j {{\eta }_{i}}={{\sigma }_{i}}+{{r}_{ij}} ηi=σi+rij假设 ∃ σ k \exists {{\sigma }_{k}} σk ∃ t ∈ R \exists t\in R tR,使得 η i = t σ k {{\eta }_{i}}=t{{\sigma }_{k}} ηi=tσk,则有
    deg ⁡ ( η i ) = deg ⁡ ( t σ k ) = deg ⁡ ( σ k )   ⇒   k = i \deg \left( {{\eta }_{i}} \right)=\deg \left( t{{\sigma }_{k}} \right)=\deg \left( {{\sigma }_{k}} \right)\text{ }\Rightarrow \text{ }k=i deg(ηi)=deg(tσk)=deg(σk)  k=i
    而考虑式子 σ i + r i j = t σ i {{\sigma }_{i}}+{{r}_{ij}}=t{{\sigma }_{i}} σi+rij=tσi r i j = ( t − 1 ) σ i {{r}_{ij}}=\left( t-1 \right){{\sigma }_{i}} rij=(t1)σi,有
    deg ⁡ [ ( t − 1 ) σ i ] = deg ⁡ ( r i j ) = 0   ( r i j ≠ 0 ) ,   deg ⁡ ( σ i ) = i ≥ 1 ⇒ t = 1 \begin{matrix} \deg \left[ \left( t-1 \right){{\sigma }_{i}} \right]=\deg \left( {{r}_{ij}} \right)=0\text{ }\left( {{r}_{ij}}\ne 0 \right),\text{ }\deg \left( {{\sigma }_{i}} \right)=i\ge 1 \\ \Rightarrow t=1 \\ \end{matrix} deg[(t1)σi]=deg(rij)=0 (rij=0), deg(σi)=i1t=1
    σ i + r i j = σ i {{\sigma }_{i}}+{{r}_{ij}}={{\sigma }_{i}} σi+rij=σi r i j ≠ 0 {{r}_{ij}}\ne 0 rij=0显然是不成立的,因此证得 ∀ t ∈ R ,   ∀ i , j ∈ { 1 , 2 , . . . , n } , η i ≠ t σ j \forall t\in R,\text{ }\forall i,j\in \left\{ 1,2,...,n \right\},{{\eta }_{i}}\ne t{{\sigma }_{j}} tR, i,j{1,2,...,n},ηi=tσj.

  2. (构造方法二)对 n = 2 n=2 n=2,有 σ 1 = x 1 + x 2 ,   σ 2 = x 1 x 2 {{\sigma }_{1}}={{x}_{1}}+{{x}_{2}},\text{ }{{\sigma }_{2}}={{x}_{1}}{{x}_{2}} σ1=x1+x2, σ2=x1x2,可令 η 1 = σ 1 + σ 2 ,   η 2 = σ 1 − σ 2 {{\eta }_{1}}={{\sigma }_{1}}+{{\sigma }_{2}},\text{ }{{\eta }_{2}}={{\sigma }_{1}}-{{\sigma }_{2}} η1=σ1+σ2, η2=σ1σ2
    ∀ n ∈ Z ≥ 3 \forall n\in {{\mathbb{Z}}_{\ge 3}} nZ3,令 η i = ∑ k ≠ i σ k {{\eta }_{i}}=\sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}} ηi=k=iσk,并证明如下。
    首先我们证明 ∀ r ∈ R ,   ∀ i , j ∈ { 1 , 2 , . . . , n } \forall r\in R,\text{ }\forall i,j\in \left\{ 1,2,...,n \right\} rR, i,j{1,2,...,n}, η i ≠ r σ j {{\eta }_{i}}\ne r{{\sigma }_{j}} ηi=rσj
    假设 η i = r σ j {{\eta }_{i}}=r{{\sigma }_{j}} ηi=rσj,则有
    ∑ k ≠ i σ k = r σ j ⇒ ∑ k ≠ i σ k − r σ j = 0 ⇒ deg ⁡ ( ∑ k ≠ i σ k − r σ j ) = deg ⁡ ( 0 ) = − ∞ \begin{matrix} \sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}}=r{{\sigma }_{j}} \\ \Rightarrow \sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}}-r{{\sigma }_{j}}=0 \\ \Rightarrow \deg \left( \sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}}-r{{\sigma }_{j}} \right)=\deg \left( 0 \right)=-\infty \\ \end{matrix} k=iσk=rσjk=iσkrσj=0deg(k=iσkrσj)=deg(0)=
    而由于 n ≥ 3 n\ge 3 n3,必有 deg ⁡ ( ∑ k ≠ i σ k − r σ j ) ≥ 1 \deg \left( \sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}}-r{{\sigma }_{j}} \right)\ge 1 deg(k=iσkrσj)1,因此产生矛盾。
    然后我们要证明 # { η i } = n \#\left\{ {{\eta }_{i}} \right\}=n #{ηi}=n R [ η 1 , . . . , η n ] = R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]=R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]=R[x1,...,xn]Sn
    考虑等式
    t 1 η 1 + t 2 η 2 + . . . + t n η n = 0   − − − ( 16.1 ) ∑ k = 1 n [ ( ∑ j ≠ k ( t j ) ) σ k ] = 0 ⇒ ∑ j ≠ 1 t j = 0 ,   ∑ j ≠ 2 t j = 0 ,   . . . ,   ∑ j ≠ n t j = 0   − − − ( 16.2 ) \begin{matrix} {{t}_{1}}{{\eta }_{1}}+{{t}_{2}}{{\eta }_{2}}+...+{{t}_{n}}{{\eta }_{n}}=0\text{ }---\left( 16.1 \right) \\ \sum\limits_{k=1}^{n}{\left[ \left( \sum\limits_{j\ne k}^{{}}{\left( {{t}_{j}} \right)} \right){{\sigma }_{k}} \right]}=0 \\ \Rightarrow \sum\limits_{j\ne 1}^{{}}{{{t}_{j}}}=0,\text{ }\sum\limits_{j\ne 2}^{{}}{{{t}_{j}}}=0,\text{ }...,\text{ }\sum\limits_{j\ne n}^{{}}{{{t}_{j}}}=0\text{ }---\left( 16.2 \right) \\ \end{matrix} t1η1+t2η2+...+tnηn=0 (16.1)k=1n[(j=k(tj))σk]=0j=1tj=0, j=2tj=0, ..., j=ntj=0 (16.2)
    T = ( t 1 t 2 . . . t n ) T T={{\left( \begin{matrix} {{t}_{1}} & {{t}_{2}} & ... & {{t}_{n}} \\ \end{matrix} \right)}^{T}} T=(t1t2...tn)T, η = ( η 1 η 2 . . . η n ) T \eta ={{\left( \begin{matrix} {{\eta }_{1}} & {{\eta }_{2}} & ... & {{\eta }_{n}} \\ \end{matrix} \right)}^{T}} η=(η1η2...ηn)T, σ = ( σ 1 σ 2 . . . σ n ) T \sigma ={{\left( \begin{matrix} {{\sigma }_{1}} & {{\sigma }_{2}} & ... & {{\sigma }_{n}} \\ \end{matrix} \right)}^{T}} σ=(σ1σ2...σn)T, A = ( 0 1 1 . . . 1 1 0 1 ⋱ 1 1 1 0 ⋱ 1 ⋮ ⋮ ⋮ ⋱ 1 1 1 1 . . . 0 ) A=\left( \begin{matrix} 0 & 1 & 1 & ... & 1 \\ 1 & 0 & 1 & \ddots & 1 \\ 1 & 1 & 0 & \ddots & 1 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & ... & 0 \\ \end{matrix} \right) A=011110111101......11110, 有
    { A σ = η   ( from  η i = ∑ k ≠ i σ k ) T T η = 0 ( from  ( 16.1 ) ) A T = 0 ( from  ( 16.2 ) ) . \left\{ \begin{aligned} & A\sigma =\eta \text{ }\left( \text{from }{{\eta }_{i}}=\sum\limits_{k\ne i}^{{}}{{{\sigma }_{k}}} \right) \\ & \\ & {{T}^{T}}\eta =0\left( \text{from }\left( \text{16}\text{.1} \right) \right) \\ & AT=0\left( \text{from }\left( \text{16}\text{.2} \right) \right) \\ \end{aligned} \right.. Aσ=η from ηi=k=iσkTTη=0(from (16.1))AT=0(from (16.2)).
    A = ( 0 1 1 . . . 1 1 0 1 ⋱ 1 1 1 0 ⋱ 1 ⋮ ⋮ ⋮ ⋱ 1 1 1 1 . . . 0 ) − r 1 + r i → r i → ( 0 1 1 . . . 1 1 − 1 0 . . . 0 1 0 − 1 . . . 0 ⋮ ⋮ ⋮ ⋱ 0 1 0 0 . . . − 1 ) r i + r 1 → r 1 → ( n − 1 0 0 . . . 0 1 − 1 0 . . . 0 1 0 − 1 . . . 0 ⋮ ⋮ ⋮ ⋱ 0 1 0 0 . . . − 1 ) A=\left( \begin{matrix} 0 & 1 & 1 & ... & 1 \\ 1 & 0 & 1 & \ddots & 1 \\ 1 & 1 & 0 & \ddots & 1 \\ \vdots & \vdots & \vdots & \ddots & 1 \\ 1 & 1 & 1 & ... & 0 \\ \end{matrix} \right)\underrightarrow{-{{r}_{1}}+{{r}_{i}}\to {{r}_{i}}}\left( \begin{matrix} 0 & 1 & 1 & ... & 1 \\ 1 & -1 & 0 & ... & 0 \\ 1 & 0 & -1 & ... & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & ... & -1 \\ \end{matrix} \right)\underrightarrow{{{r}_{i}}+{{r}_{1}}\to {{r}_{1}}}\left( \begin{matrix} n-1 & 0 & 0 & ... & 0 \\ 1 & -1 & 0 & ... & 0 \\ 1 & 0 & -1 & ... & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & 0 & 0 & ... & -1 \\ \end{matrix} \right) A=011110111101......11110 r1+riri011111001010............10001 ri+r1r1n111101000010............00001
    ⇒ det ⁡ ( A ) = ( n − 1 ) det ⁡ ( − I n − 1 ) = ( n − 1 ) ( − 1 ) ( n − 1 ) + ( n − 2 ) + . . . + 1 det ⁡ ( I 1 ) = ( n − 1 ) ( − 1 ) n ( n − 1 ) 2 ≠ 0 \begin{aligned} & \Rightarrow \det \left( A \right)=\left( n-1 \right)\det \left( -{{I}_{n-1}} \right) \\ & =\left( n-1 \right){{\left( -1 \right)}^{\left( n-1 \right)+\left( n-2 \right)+...+1}}\det \left( {{I}_{1}} \right) \\ & =\left( n-1 \right){{\left( -1 \right)}^{\frac{n\left( n-1 \right)}{2}}} \\ & \ne 0 \\ \end{aligned} det(A)=(n1)det(In1)=(n1)(1)(n1)+(n2)+...+1det(I1)=(n1)(1)2n(n1)=0
    ⇒ \Rightarrow A A A是可逆矩阵。
    所以齐次线性方程组 A T = 0 AT=0 AT=0的解为 T = ( 0 , 0 , . . . , 0 ) T T={{\left( 0,0,...,0 \right)}^{T}} T=(0,0,...,0)T,显然也就有
    T = ( 0 , 0 , . . . 0 ) T ⇔ T T η = 0 T={{\left( 0,0,...0 \right)}^{T}}\Leftrightarrow {{T}^{T}}\eta =0 T=(0,0,...0)TTTη=0
    所以 { η 1 , η 2 , . . . , η n } \left\{ {{\eta }_{1}},{{\eta }_{2}},...,{{\eta }_{n}} \right\} {η1,η2,...,ηn}是线性无关向量组, # { η i } = n \#\left\{ {{\eta }_{i}} \right\}=n #{ηi}=n.
    A σ = η σ = A − 1 η R [ x 1 , x 2 , . . . , x n ] S n = R [ σ 1 , . . . , σ n ] ⊆ R [ η 1 , . . . , η n ] \begin{matrix} A\sigma =\eta \\ \sigma ={{A}^{-1}}\eta \\ R{{\left[ {{x}_{1}},{{x}_{2}},...,{{x}_{n}} \right]}^{{{S}_{n}}}}=R\left[ {{\sigma }_{1}},...,{{\sigma }_{n}} \right]\subseteq R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right] \\ \end{matrix} Aσ=ησ=A1ηR[x1,x2,...,xn]Sn=R[σ1,...,σn]R[η1,...,ηn]
    另一方面,显然有 ∀ g ∈ R [ η 1 , . . . , η n ] ,   g ∈ R [ x 1 , . . . , x n ] S n ⇒ R [ η 1 , . . . , η n ] ⊆ R [ x 1 , . . . , x n ] S n \forall g\in R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right],\text{ }g\in R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}}\Rightarrow R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]\subseteq R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} gR[η1,...,ηn], gR[x1,...,xn]SnR[η1,...,ηn]R[x1,...,xn]Sn
    因此可得到 R [ η 1 , . . . , η n ] = R [ x 1 , . . . , x n ] S n R\left[ {{\eta }_{1}},...,{{\eta }_{n}} \right]=R{{\left[ {{x}_{1}},...,{{x}_{n}} \right]}^{{{S}_{n}}}} R[η1,...,ηn]=R[x1,...,xn]Sn

Hw17:证明 Z \mathbb{Z} Z P I D PID PID

Proof:
  First of all obviously Z \mathbb{Z} Z is a unital commutative ring. So Z \mathbb{Z} Z is a PID equals to proposition: for any ideal I ⊆ Z I\subseteq \mathbb{Z} IZ, ∃ d ∈ Z ,   s . t .   I = d Z \exists d\in \mathbb{Z},\text{ }s.t.\text{ }I=d\mathbb{Z} dZ, s.t. I=dZ.
Let I ⊆ Z I\subseteq \mathbb{Z} IZ be one ideal of Z \mathbb{Z} Z.
If I = { 0 } I=\left\{ 0 \right\} I={0}, then we have I = 0 Z I=0\mathbb{Z} I=0Z.
If I ≠ { 0 } I\ne \left\{ 0 \right\} I={0}, then ∃ a ∈ I ,   a ≠ 0 \exists a\in I,\text{ }a\ne 0 aI, a=0. Because ± 1 ∈ Z \pm 1\in \mathbb{Z} ±1Z, I Z ⊆ I I\mathbb{Z}\subseteq I IZI, we have − a ∈ I -a\in I aI,
thus there must be at least one positive element b > 0 ,   b ∈ I b>0,\text{ }b\in I b>0, bI. Denote the minimum positive of I I I by c c c, that is
∀ t ∈ I > 0 ,   t ≥ c \forall t\in {{I}_{>0}},\text{ }t\ge c tI>0, tc
Then obviously we have
c Z = { n c = ( n ) ⋅ ( c + c + . . . + c ⏞ ∣ n ∣ ) ∣ n = ± 1 , ± 2 , ± 3 , . . . } ⊆ I c\mathbb{Z}=\left\{ \left. nc= \left( n \right)\centerdot \left( \overbrace{c+c+...+c}^{\left| n \right|} \right) \right|n=\pm 1,\pm 2,\pm 3,... \right\}\subseteq I cZ=nc=(n)c+c+...+c nn=±1,±2,±3,...I
Assume that ∃ d ∈ I ,   ∀ n ∈ Z ,   d ≠ n c \exists d\in I,\text{ }\forall n\in \mathbb{Z},\text{ }d\ne nc dI, nZ, d=nc, then ∃ n 1 ∈ Z \exists {{n}_{1}}\in \mathbb{Z} n1Z, s.t.
∣ n 1 ∣ c < d < ∣ n 1 + 1 ∣ c , \left| {{n}_{1}} \right|c<d<\left| {{n}_{1}}+1 \right|c, n1c<d<n1+1c,
thus we have
∣ n 1 + 1 ∣ c − d ∈ I   &   0 < ( n 1 + 1 ) c − d < c , \left| {{n}_{1}}+1 \right|c-d\in I\text{ }\And \text{ }0<\left( {{n}_{1}}+1 \right)c-d<c, n1+1cdI & 0<(n1+1)cd<c,
which contradicts to the condition “c is the minimum positive element in I I I”. Thus we have
∀ t ∈ I ,   ∃ n t ∈ Z ,   s . t .   t = n t c , \forall t\in I,\text{ }\exists {{n}_{t}}\in \mathbb{Z},\text{ }s.t.\text{ }t={{n}_{t}}c, tI, ntZ, s.t. t=ntc,
which means
I ⊆ c Z I\subseteq c\mathbb{Z} IcZ.
Thus we have I = c Z I=c\mathbb{Z} I=cZ, which means all ideals of Z \mathbb{Z} Z are principal ideals. Thus Z \mathbb{Z} Z is PID.

Hw18:找一个 Z \mathbb{Z} Z的素理想但同时不是极大理想。

解:
{ 0 } \left\{ 0 \right\} {0}满足题目要求。
一方面,由于 Z \mathbb{Z} Z是整环,有 ∀ a , b ∈ Z ,   a b = 0   ⇒   a = 0  or  b = 0 \forall a,b\in \mathbb{Z},\text{ }ab=0\text{ }\Rightarrow \text{ }a=0\text{ or}\text{ }b=0 a,bZ, ab=0  a=0 or b=0,即有
a b ∈ { 0 }   ⇒   a ∈ { 0 }  or  b ∈ { 0 } ab\in \left\{ 0 \right\}\text{ }\Rightarrow \text{ }a\in \left\{ 0 \right\}\text{ or}\text{ }b\in \left\{ 0 \right\} ab{0}  a{0} or b{0},所以平凡理想 { 0 } \left\{ 0 \right\} {0}是素理想。
另一方面,存在 Z \mathbb{Z} Z的其他理想 d Z ,   ∀ d ∈ Z \ { 0 } d\mathbb{Z},\text{ }\forall d\in \mathbb{Z}\backslash \left\{ 0 \right\} dZ, dZ\{0} { 0 } ⊆ d Z \left\{ 0 \right\}\subseteq d\mathbb{Z} {0}dZ,所以 { 0 } \left\{ 0 \right\} {0}不是极大理想。

Hw19:证明 7 ∈ Z [ − 5 ] 7\in \mathbb{Z}\left[ \sqrt[{}]{-5} \right] 7Z[5 ]是不可约元素。

证明:
7 = ( a + b − 5 ) ( c + d − 5 ) 7=\left( a+b\sqrt[{}]{-5} \right)\left( c+d\sqrt[{}]{-5} \right) 7=(a+b5 )(c+d5 ),其中 a + b − 5 ,   c + d − 5 a+b\sqrt[{}]{-5},\text{ }c+d\sqrt[{}]{-5} a+b5 , c+d5 均不可逆。
⇒ 49 = ( a + b − 5 ) ( a − b − 5 ) ( c + d − 5 ) ( c − d − 5 ) = ( a 2 + 5 b 2 ) ( c 2 + 5 d 2 ) ⇒ a 2 + 5 b 2 = 1 , 7 , 49 \begin{aligned} & \Rightarrow 49=\left( a+b\sqrt[{}]{-5} \right)\left( a-b\sqrt[{}]{-5} \right)\left( c+d\sqrt[{}]{-5} \right)\left( c-d\sqrt[{}]{-5} \right)=\left( {{a}^{2}}+5{{b}^{2}} \right)\left( {{c}^{2}}+5{{d}^{2}} \right) \\ & \Rightarrow {{a}^{2}}+5{{b}^{2}}=1,7,49 \\ \end{aligned} 49=(a+b5 )(ab5 )(c+d5 )(cd5 )=(a2+5b2)(c2+5d2)a2+5b2=1,7,49
但是 a + b − 5   &   c + d − 5 a+b\sqrt[{}]{-5}\text{ }\And \text{ }c+d\sqrt[{}]{-5} a+b5  & c+d5 均不可逆,所以 a + b − 5 ≠ 1 , 49 a+b\sqrt[{}]{-5}\ne 1,49 a+b5 =1,49(等于49时 c + d − 5 = 1 c+d\sqrt[{}]{-5}=1 c+d5 =1可逆)
所以有 a 2 + 5 b 2 = 7 {{a}^{2}}+5{{b}^{2}}=7 a2+5b2=7,此方程在 Z \mathbb{Z} Z中无解。
故7没有(不可分解)不可逆因子,故7不可约。

Hw20:证明若存在 f : K 1 ↦ K 2 f:{{K}_{1}}\mapsto {{K}_{2}} f:K1K2是一个域态射,则 c h a r ( K 1 ) = c h a r ( K 2 ) char\left( {{K}_{1}} \right)=char\left( {{K}_{2}} \right) char(K1)=char(K2)

证明:
给定两个域 ( K 1 , + , × ) , ( K 2 , ⊕ , ⊗ ) \left( {{K}_{1}},+,\times \right),\left( {{K}_{2}},\oplus ,\otimes \right) (K1,+,×),(K2,,)和一个域态射 f : K 1 ↦ K 2 f:{{K}_{1}}\mapsto {{K}_{2}} f:K1K2
首先域态射 f f f一定是单射,即 ∀ k 11 , k 12 ∈ K 1 ,   k 11 ≠ k 12 \forall {{k}_{11}},{{k}_{12}}\in {{K}_{1}},\text{ }{{k}_{11}}\ne {{k}_{12}} k11,k12K1, k11=k12,有 f ( k 11 ) ≠ f ( k 12 ) f\left( {{k}_{11}} \right)\ne f\left( {{k}_{12}} \right) f(k11)=f(k12)
K 1 {{K}_{1}} K1 + , × +,\times +,×单位元分别为 0 + , 1 × {{0}^{+}},{{1}^{\times }} 0+,1× K 2 {{K}_{2}} K2 ⊕ , ⊗ \oplus ,\otimes ,单位元分别为 0 ⊕ , 1 ⊗ {{0}^{\oplus }},{{1}^{\otimes }} 0,1,则一定有 f ( 0 + ) = 0 ⊕ ,   f ( 1 × ) = 1 ⊗ f\left( {{0}^{+}} \right)={{0}^{\oplus }},\text{ }f\left( {{1}^{\times }} \right)={{1}^{\otimes }} f(0+)=0, f(1×)=1.
定义 r ‾ : = 1 × + 1 × + . . . + 1 × ⏟ r ,    r ‾ ∗ : = 1 ⊗ + 1 ⊗ + . . . + 1 ⊗ ⏟ r , \overline{r}:=\underbrace{{{1}^{\times }}+{{1}^{\times }}+...+{{1}^{\times }}}_{r},\ \ {{\overline{r}}^{*}}:=\underbrace{{{1}^{\otimes }}+{{1}^{\otimes }}+...+{{1}^{\otimes }}}_{r}, r:=r 1×+1×+...+1×,  r:=r 1+1+...+1,则有
C K 1 = { r ‾ ∣ r = 1 , 2 , . . . }   C K 2 = { r ‾ ∗ ∣ r = 1 , 2 , . . . } {{C}_{{{K}_{1}}}}=\left\{ \left. \overline{r} \right|r=1,2,... \right\}\text{ }{{C}_{{{K}_{2}}}}=\left\{ \left. {{\overline{r}}^{*}} \right|r=1,2,... \right\} CK1={rr=1,2,...} CK2={rr=1,2,...}
首先有 f ( C K 1 ) ⊆ C K 2 f\left( {{C}_{{{K}_{1}}}} \right)\subseteq {{C}_{{{K}_{2}}}} f(CK1)CK2,即有 f : C K 1 → C K 2 f:{{C}_{{{K}_{1}}}}\to {{C}_{{{K}_{2}}}} f:CK1CK2
∀ r ‾ ∈ C K 1 \forall \overline{r}\in {{C}_{{{K}_{1}}}} rCK1,有
f ( r ‾ ) = f ( 1 × + 1 × + . . . + 1 × ⏟ r ) = f ( 1 × ) ⊕ f ( 1 × ) ⊕ . . . ⊕ f ( 1 × ) ⏟ r = 1 ⊗ ⊕ 1 ⊗ ⊕ . . . ⊕ 1 ⊗ ⏟ r = r ‾ ∗ ∈ C K 2 \begin{aligned} & f\left( \overline{r} \right)=f\left( \underbrace{{{1}^{\times }}+{{1}^{\times }}+...+{{1}^{\times }}}_{r} \right) \\ & =\underbrace{f\left( {{1}^{\times }} \right)\oplus f\left( {{1}^{\times }} \right)\oplus ...\oplus f\left( {{1}^{\times }} \right)}_{r} \\ & =\underbrace{{{1}^{\otimes }}\oplus {{1}^{\otimes }}\oplus ...\oplus {{1}^{\otimes }}}_{r} \\ & ={{\overline{r}}^{*}}\in {{C}_{{{K}_{2}}}} \\ \end{aligned} f(r)=f(r 1×+1×+...+1×)=r f(1×)f(1×)...f(1×)=r 11...1=rCK2
其次有 f : C K 1 → C K 2 f:{{C}_{{{K}_{1}}}}\to {{C}_{{{K}_{2}}}} f:CK1CK2是双射。
∀ r ‾ ∗ ∈ C K 2 , \forall {{\overline{r}}^{*}}\in {{C}_{{{K}_{2}}}}, rCK2,
r ‾ ∗ = 1 ⊗ ⊕ 1 ⊗ ⊕ . . . ⊕ 1 ⊗ ⏟ r = f ( 1 × ) ⊕ f ( 1 × ) ⊕ . . . ⊕ f ( 1 × ) ⏟ r = f ( 1 × + 1 × + . . . + 1 × ⏟ r ) = f ( r ‾ ) \begin{aligned} & {{\overline{r}}^{*}}=\underbrace{{{1}^{\otimes }}\oplus {{1}^{\otimes }}\oplus ...\oplus {{1}^{\otimes }}}_{r} \\ & =\underbrace{f\left( {{1}^{\times }} \right)\oplus f\left( {{1}^{\times }} \right)\oplus ...\oplus f\left( {{1}^{\times }} \right)}_{r} \\ & =f\left( \underbrace{{{1}^{\times }}+{{1}^{\times }}+...+{{1}^{\times }}}_{r} \right) \\ & =f\left( \overline{r} \right) \\ \end{aligned} r=r 11...1=r f(1×)f(1×)...f(1×)=f(r 1×+1×+...+1×)=f(r)
⇒ ∃ r ‾ ∈ C K 1 ,   s . t .   f ( r ‾ ) = r ‾ ∗ \Rightarrow \exists \overline{r}\in {{C}_{{{K}_{1}}}},\text{ }s.t.\text{ }f\left( \overline{r} \right)={{\overline{r}}^{*}} rCK1, s.t. f(r)=r,所以 f : C K 1 → C K 2 f:{{C}_{{{K}_{1}}}}\to {{C}_{{{K}_{2}}}} f:CK1CK2是满射。又 f : C K 1 → C K 2 f:{{C}_{{{K}_{1}}}}\to {{C}_{{{K}_{2}}}} f:CK1CK2是单射,所以 f : C K 1 → C K 2 f:{{C}_{{{K}_{1}}}}\to {{C}_{{{K}_{2}}}} f:CK1CK2是双射。
所以有    ⁣ ⁣ #  ⁣ ⁣   C K 1 = # C K 2 \text{ }\!\!\#\!\!\text{ }{{C}_{{{K}_{1}}}}=\#{{C}_{{{K}_{2}}}}  # CK1=#CK2,即 c h a r ( K 1 ) = c h a r ( K 2 ) char\left( {{K}_{1}} \right)=char\left( {{K}_{2}} \right) char(K1)=char(K2)

更多推荐

抽象代数练习(II)