Aries

Rings, ideals, modules

In this note, we will not recall basic concepts. The definition of ring, ideal,module, homomorphism of rings are not reproduced. In this course, any ring A always be:
1. c o m m u t a t i v e : x ⋅ y = y ⋅ x  for any  x , y ∈ A 2. a s s o c i a t i v e : x ( y z ) = ( x y ) z  for any  x , y , z ∈ A 3. u n o t a r y : there exists  1 ∈ A  such that  1 ⋅ x = x  for any  x ∈ A . 1mutative:x\cdot y=y\cdot x \text{ for any }x,y \in A\\ 2.associative:x(yz)=(xy)z \text{ for any } x,y,z\in A\\ 3.unotary:\text{there exists }1\in A\text{ such that }1\cdot x=x\text{ for any }x\in A. 1.commutative:xy=yx for any x,yA2.associative:x(yz)=(xy)z for any x,y,zA3.unotary:there exists 1A such that 1x=x for any xA.
So,for any ring homomorphism f : A → B f:A\rightarrow B f:AB preserves the units: f ( 1 ) = 1 f(1)=1 f(1)=1.We denote by A × A^{\times} A× the multiplicative group of invertible elements of A.

We will say that an element a ∈ A a\in A aA is
n i l p o t e n t : if there exist n ∈ N s u c h t h a t a n = 0 d i v i s o r o f z e r o : if there is b ∈ A \ { 0 } such that ab=0 r e g u l a r : if it is not a divider of zero . nilpotent:\text{if there exist n}\in \mathbb{N} such that a^{n}=0\\ divisor of zero:\text{if there is b}\in A \backslash\{0\} \text{such that ab=0}\\ regular:\text{if it is not a divider of zero}. nilpotent:if there exist nNsuchthatan=0divisorofzero:if there is bA\{0}such that ab=0regular:if it is not a divider of zero.
We say that A is integral (resp. Is a field) if A ≠ { 0 } A \neq\{0\} A={0} and if any non-zero element of A is regular (resp. Invertible).(The latter conditions are more important)

An ideal I ⊂ A I\subset A IA is principal if there exists a ∈ A a\in A aA such that I = A a : { a b : b ∈ A } I=Aa:\{ab:b\in A\} I=Aa:{ab:bA}.We say that I I I is of finite type, if it exits a 1 , a 2 , … , a n ∈ A a_1,a_2,\dots,a_{n}\in A a1,a2,,anA(for some n ∈ N n\in \mathbb N nN) such that I = A a 1 + A a 2 + ⋯ + A a n I=Aa_1+Aa_2+\cdots+Aa_{n} I=Aa1+Aa2++Aan;in this case, the quotient ring A / I A /I A/I is often denoted :
A / ( a 1 , … , a n ) . A /\left(a_{1}, \ldots, a_{n}\right). A/(a1,,an).
We say that A is principal if all its ideals are principal.

Example 1.1 (1) Ring Z \mathbb Z Z is principal;to show this we must show that any ideal I ⊂ Z I\subset \mathbb Z IZ is principal. if I = 0 I=0 I=0,this is trivial, and if not, let a ∈ I a\in I aI be the smallest element which >0.For all b ∈ I b\in I bI there exist q , r ∈ Z q,r\in\mathbb Z q,rZ such that b = a q + r b=aq+r b=aq+r and 0 ≤ r ≤ a 0\leq r \leq a 0ra; we can see r ∈ I r\in I rI,therefore r = 0 r=0 r=0, by the minimality of a a a, hence I = a Z I=a\mathbb Z I=aZ.

(2) if K K K is a field, the same argument applies to the ring of polynomials K [ X ] K[X] K[X]:for any non-zero ideal I ⊂ K [ X ] I\subset K[X] IK[X] we choose p ( X ) ∈ I p(X) \in I p(X)I which is non zero of minimal degree polynomial. If b ( X ) ∈ I b(X)\in I b(X)I,by Euclidean division, we can give q ( X ) , r ( X ) ∈ K [ X ] q(X),r(X)\in K[X] q(X),r(X)K[X] such that b ( X ) = p ( X ) ⋅ q ( X ) + r ( X ) b(X)=p(X)\cdot q(X)+r(X) b(X)=p(X)q(X)+r(X) with either r ( X ) = 0 r(X)=0 r(X)=0 or d e g X r ( X ) < d e g X p ( X ) deg_{X} r(X) <deg_{X}p(X) degXr(X)<degXp(X). But r ( X ) ∈ I r(X)\in I r(X)I,so finally r ( X ) = 0 r(X)=0 r(X)=0 by the minimality of d e g X p ( X ) deg_{X}p(X) degXp(X), hence I = p ( X ) ⋅ K [ X ] I=p(X)\cdot K[X] I=p(X)K[X].

Algebras

An A − a l g e b r a A-algebra Aalgebra is dual ( B , f ) (B,f) (B,f) consisting of a ring B B B and a homomorphism of rings f : A → B f:A\rightarrow B f:AB, called the structural morphism of B B B. A homomorphism of A − a l g e b r a A-algebra Aalgebra
g : ( B , f ) → ( B ′ , f ′ ) g:(B, f) \rightarrow\left(B^{\prime}, f^{\prime}\right) g:(B,f)(B,f)
is a homomorphism of rings g : B → B ′ g: B \rightarrow B^{\prime} g:BB switching the diagram

Obviously, the composition of two homomorphism of A − a l g e b r a A-algebra Aalgebra g : B → B ′ g:B\rightarrow B' g:BB and g ′ : B ′ → B ′ ′ g':B'\rightarrow B'' g:BB is homomorphism of A − a l g e b r a A-algebra Aalgebra g ′ ∘ g : B → B ′ ′ g^{\prime} \circ g: B \rightarrow B^{\prime \prime} gg:BB. We denote by
A − A l g ( B , B ′ ) A-Alg(B,B') AAlg(B,B)
the set of homomorphism of A − a l g e b r a A-algebra Aalgebra B → B ′ B\rightarrow B' BB.

For example, for all n ∈ N n\in \mathbb N nN, the ring of polynomials of n n n variables A [ X 1 , … , X n ] A[X_1,\dots,X_{n}] A[X1,,Xn] with coefficients in A A A is provided with a canonical structure of A − a l g e b r a A-algebra Aalgebra, whose structural morphism is the natural inclusion A → A [ X 1 , … , X n ] A\rightarrow A[X_1,\dots,X_{n}] AA[X1,,Xn] which identifies A with the sub-ring of polynomials of total degree 0. Also, for all ideal I ⊂ A I\subset A IA, the canonical projection A → A / I A\rightarrow A /I AA/I provides the quotient ring A / I A /I A/I with a natural structure of A − a l g e b r a A-algebra Aalgebra.

Remark 1.2 (1) Every ring A admits a unique homomorphism Z → A \mathbb Z\rightarrow A ZA, therefore every ring is canonically a Z − a l g e b r a \mathbb Z-algebra Zalgebra.
(2) Let A A A be a ring, B B B is an A − a l g e b r a A-algebra Aalgebra, n ∈ N n\in\mathbb N nN, and ( b 1 , … , b n ) ∈ B n (b_1,\dots,b_{n})\in B^{n} (b1,,bn)Bn. Note that there is a unique homomorphism of A − a l g e b r a A-algebra Aalgebra f : A [ X 1 , … , X n ] → B f:A[X_1,\dots,X_{n}]\rightarrow B f:A[X1,,Xn]B such that f ( X i ) = b i f(X_{i})=b_{i} f(Xi)=bi for i = 1 , … , n i=1,\dots,n i=1,,n:this is the homomorphism defined by
f ( P ) : = P ( b 1 , … , b n ) ∀ P ∈ A [ X 1 , … , X n ] . f(P):=P(b_1,\dots,b_{n}) \quad \forall P\in A[X_1,\dots,X_{n}]. f(P):=P(b1,,bn)PA[X1,,Xn].
In other words, for all A − a l g e b r a A-algebra Aalgebra B B B and all n ∈ N n\in \mathbb N nN there is a natural bijection
B n → ∼ A − Alg ⁡ ( A [ X 1 , … , X n ] , B ) . B^{n} \stackrel{\sim}{\rightarrow} A-\operatorname{Alg}\left(A\left[X_{1}, \ldots, X_{n}\right], B\right). BnAAlg(A[X1,,Xn],B).
We will see in section 2.2 how this property characterizes A [ X 1 , … , X n ] A[X_1,\dots,X_{n}] A[X1,,Xn] except for canonical isomorphism.

We say that an A − a l g e b r a A-algebra Aalgebra B B B is ring of finite type, if there exists a surjective homomorphism of A − a l g e b r a A-algebra Aalgebra π : A [ X 1 , … , X n ] → B \pi:A[X_1,\dots,X_{n}]\rightarrow B π:A[X1,,Xn]B, for some n ∈ N n\in \mathbb N nN. In view of remark 1.2(2), this amounts to saying that there exists a finite system b ∙ : = ( b 1 , … , b n ) b_{\bullet}:=\left(b_{1}, \dots, b_{n}\right) b:=(b1,,bn) of elements of B B B such that all b ∈ B b\in B bB is written under the form b = P ( b 1 , … , b n ) b=P(b_1,\dots,b_{n}) b=P(b1,,bn) for some polynomial P ∈ A [ X 1 , … , X n ] P\in A[X_1,\dots,X_{n}] PA[X1,,Xn]; We say that b ∙ b_{\bullet} b is a finite system of generators of the A − a l g e b r a A-algebra Aalgebra B B B, and we also write B = A [ b 1 , … , b n ] B=A[b_1,\dots,b_{n}] B=A[b1,,bn]. We say that B B B is an Algebra of finite presentation, if one can find a π \pi π surjection as above, whose kernel π − 1 ( 0 ) \pi^{-1}(0) π1(0) is an ideal of finite type; In this case B B B is isomorphic to a quotient A [ X 1 , … , X n ] / I A[X_1,\dots,X_{n}] /I A[X1,,Xn]/I, with I ⊂ A [ X 1 , … , X n ] I\subset A[X_1,\dots,X_{n}] IA[X1,,Xn] an ideal of finite type. if ( B , f ) (B,f) (B,f) is an A − a l g e b r a A-algebra Aalgebra of finite type.(resp. finite presentation), we also say that f f f is a homomorphism of rings of finite type (resp. finite presentation).

Exercise 1.3 If A → f B → g C A \stackrel{f}{\rightarrow} B \stackrel{g}{\rightarrow} C AfBgC are two homomorphisms of rings of finite type(resp. finite presentation), show that it is the same for g ∘ f g \circ f gf.

Field of fractions

For any integral ring A we denote by
F r a c   A Frac\ A Frac A
the field of fractions of A. Recall that this is the set of fractions a / b a /b a/b (also noted b − 1 a b^{-1}a b1a), i.e. the equivalence classes of couples ( a , b ) (a,b) (a,b) with a , b ∈ A a,b\in A a,bA and b ≠ 0 b\neq 0 b=0; two such couples ( a , b ) , ( a ′ , b ′ ) (a,b),(a',b') (a,b),(a,b) are equivalent ⇔ a b ′ = a ′ b \Leftrightarrow a b^{\prime}=a^{\prime} b ab=ab. We define the laws of addition and multiplication of F r a c   A Frac\ A Frac A by the obvious formulas:
a / b + c / d : = ( a d + c b ) / b d a / b ⋅ c / d : = a c / b d . a / b+c / d:=(a d+c b) / b d \quad a / b \cdot c / d:=a c / b d. a/b+c/d:=(ad+cb)/bda/bc/d:=ac/bd.
We can easily verify that these laws do not depend on the choice of the representatives ( a , b ) , ( c , d ) (a,b),(c,d) (a,b),(c,d) for a / b , c / d a /b,c /d a/b,c/d; the identity elements of addition and multiplication are 0 / 1 0 /1 0/1 and 1 / 1 1 /1 1/1, so that − ( a / b ) = ( − a ) / b -(a /b)=(-a) /b (a/b)=(a)/b and ( a / b ) − 1 = b / a (a /b)^{-1}=b /a (a/b)1=b/a if a ≠ 0 a\neq 0 a=0. Furthermore, we have the injective homomorphism of A → F r a c   A : a → a / 1 A\rightarrow Frac\ A:a\rightarrow a /1 AFrac A:aa/1;thus, F r a c   A Frac\ A Frac A is the smallest field containing A A A, which is unique except for isomorphism. We leave the details to the reader, as we will see a more general construction in section 2.3.

Prime and maximum ideals

We recall that an ideal I ⊂ A I\subset A IA is said:
prime : if  1 ∉ I  and  x , y ∉ I ⇒ x y ∉ I  for all   x , y ∈ A maximal : i f   1 ∉ I  and the only ideals of A containing I are I and A. \text{prime}:\text{if}\ 1\notin I \text{ and } x,y\notin I\Rightarrow x y \notin I \text{ for all }\ x,y\in A\\ \text{maximal}:if\ 1\notin I\ \text{and the only ideals of A containing I are I and A.} prime:if 1/I and x,y/Ixy/I for all  x,yAmaximal:if 1/I and the only ideals of A containing I are I and A.
Proposition 1.4. Let A A A be a ring, I ⊂ A I\subset A IA an ideal. We have:
(i) I is prime if and only if A / I A /I A/I is an integral ring.
(ii) I is maximal if and only if A / I A /I A/I is a field.
(iii) Any maximum ideal is prime.

Demonstration: (i) Let x , y ∈ A x,y\in A x,yA, and denote by x ˉ , y ˉ ∈ A / I \bar{x}, \bar{y} \in A / I xˉ,yˉA/I the classes of x x x and y y y.if x ˉ , y ˉ ≠ 0 \bar{x},\bar{y}\neq 0 xˉ,yˉ=0, we have x , y ∉ I x,y\notin I x,y/I;if now I I I is prime, we deduce x y ∉ I xy\notin I xy/I,and therefore x ˉ ⋅ y ˉ ≠ 0 \bar{x}\cdot\bar{y}\neq 0 xˉyˉ=0, which shows that A / I A /I A/I is integral. Conversely, if A / I A /I A/I is integral, we have x ˉ ⋅ y ˉ ≠ 0 \bar{x}\cdot\bar{y}\neq 0 xˉyˉ=0, i.e. x y ∉ I xy\notin I xy/I, and then I I I is prime.
(ii) Let x ∈ A x\in A xA such that x ∉ I x\notin I x/I, therefore x ˉ ≠ 0 \bar{x}\neq 0 xˉ=0. if A / I A /I A/I is a field, there exists y ∈ A y\in A yA such that x ˉ ⋅ y ˉ = 1 \bar{x}\cdot\bar{y}=1 xˉyˉ=1 in A / I A /I A/I, therefore x y − 1 ∈ I xy-1\in I xy1I, hence I + A x = A I+Ax=A I+Ax=A; (Note that the sum of any two ideals is an ideal. )Since x x x is arbitrary, we deduce that the only ideals that contain I I I are I I I and A A A, i.e. I I I is maximal. On the other hand, if I I I is maximal, the hypothesis x ∉ I x\notin I x/I Implies that we have I + A x = A I+Ax=A I+Ax=A, so there exists a ∈ I , y ∈ A a\in I,y\in A aI,yA such that x y + a = 1 xy+a=1 xy+a=1, hence x ˉ ⋅ y ˉ = 1 \bar{x}\cdot \bar{y}=1 xˉyˉ=1, which shows that A / I A /I A/I is a field. Assertion (iii) follows Immediately from (i) and (ii).

We note:
Max A A A: the set of maximum ideals of A A A(maximum spectrum of A);
Spec A A A: the set of prime ideals of A A A(prime spectrum of A A A).
One of the objectives of this course is to explain why Max A A A and Spec A A A are ‘geometric objects’. According to Proposition 1.4(iii), we have: Max A ⊂ A\subset ASpec A A A.

Exercise 1.5. Let A A A be an integral principal ring. Show that Spec A A A={0} ⋃ \bigcup Max A A A.

This follow prime ideals in integral principal ring is maximal.

Lemma 1.6 If I ⊂ A I\subset A IA is an ideal, we have a canonical bijection:
{ideals J J J of A A A such that I ⊂ J I\subset J IJ} ⟷ \longleftrightarrow {ideals of A / I A /I A/I} ( J ⊂ A J\subset A JA) → \rightarrow ( J / I ⊂ A / I J /I\subset A /I J/IA/I).
This bijection induced by restriction of bijections:
{ p ∈ Spec ⁡ A ∣ I ⊂ p } ⟷ Spec ⁡ A / I { m ∈ Max ⁡ A ∣ I ⊂ m } ⟷ Max ⁡ A / I . \{\mathfrak{p} \in \operatorname{Spec} A | I \subset \mathfrak{p}\} \longleftrightarrow \operatorname{Spec} A / I \quad\{\mathfrak{m} \in \operatorname{Max} A | I \subset \mathfrak{m}\} \longleftrightarrow \operatorname{Max} A / I. {pSpecAIp}SpecA/I{mMaxAIm}MaxA/I.
Demonstration: Let π : A → A / I \pi:A\rightarrow A /I π:AA/I be the canonical projection; the reciprocal bijection associates with any ideal $\bar J o f of of A /I$, the ideal π − 1 ( J ˉ ) ⊂ A \pi^{-1}(\bar{J})\subset A π1(Jˉ)A. If p \frak p p is an ideal of A A A and I ⊂ p I\subset\mathfrak p Ip, we have A / p = ( A / I ) / ( p / I ) A /\mathfrak p=(A /I) /(\mathfrak p /I) A/p=(A/I)/(p/I), therefore A / p A /\mathfrak p A/p is integral (resp. a field) if and only if ( A / I ) / ( p / I ) (A /I) /(\mathfrak p /I) (A/I)/(p/I) is integral (resp. a filed), and with proposition 1.4 we deduce that p \mathfrak p p is prime (resp. maximal) in A A A if and only if p / I \mathfrak p /I p/I is prime (resp. maximum) in A / I A /I A/I.

Definition 1.7. Let A A A be a ring, a ∈ A a\in A aA non-zero element.
(i)We say that a a a is prime if the ideal A a Aa Aa is prime.
(ii)We say that a a a is reducible, if it is the product of two non-reducible and non-invertible.
(iii)We say that A A A is factorial if it is integral and if any non-zero and non-invertible element of A A A is written as a product of prime elements.

Remark 1.8 (i) Let A A A be a ring. In the following, we will use the notation ⋅ ∣ ⋅ \cdot|\cdot for the divisiblity relation in A A A: therefore, a ∣ b a|b ab means that a , b ∈ A a,b\in A a,bA and b ∈ A a b\in Aa bAa.
(ii) if A is factorial and a ∈ A \ 0 a\in A\backslash {0} aA\0, the factorization a = u p 1 ⋯ p t a=up_1\cdots p_{t} a=up1pt with u ∈ A × u\in A^{\times} uA× and p 1 , ⋯   , p t p_1,\cdots,p_{t} p1,,pt prime elements is essentially unique:if a = v q 1 ⋯ q s a=vq_1\cdots q_{s} a=vq1qs is a other factorization, we have s = t s=t s=t and there exists a premutation σ : { 1 , … , t } → ∼ { 1 , … , t } \sigma:\{1, \ldots, t\} \stackrel{\sim}{\rightarrow}\{1, \ldots, t\} σ:{1,,t}{1,,t} such that p i − 1 q σ ( i ) ∈ A × p_{i}^{-1}q_{\sigma(i)}\in A^{\times} pi1qσ(i)A× for i = 1 , … , t i=1,\dots,t i=1,,t. For the proof, we reason by induction on t t t: we have t = 0 t=0 t=0 if and only if a ∈ A × a\in A^{\times} aA×, and in this case it is clear that s = 0 s=0 s=0. Suppose that t ≥ 1 t\geq 1 t1 and that the uniqueness of the factors is already known for the products of t − 1 t-1 t1 prime elements; since the ideal A p 1 Ap_1 Ap1 is prime, we have p 1 ∣ q i p_1|q_{i} p1qi for some i ≤ s i\leq s is, and leaves to permute the factors we can assume that i = 1 i=1 i=1. There exists u 1 ∈ A u_1\in A u1A such that q 1 = p 1 u 1 q_1=p_1u_1 q1=p1u1, hence u 1 ∈ A × u_1\in A^{\times} u1A× and a ′ : = u p 2 ⋯ p t = u 1 v ⋅ q 2 ⋯ q s a':=up_2\cdots p_{t}=u_1v\cdot q_2\cdots q_{s} a:=up2pt=u1vq2qs; by induction hypothesis, we have the uniqueness of the factorization of a ′ a' a with premutation of the factors close, hence the same foa a a a.
(iii) Let a , b , d ∈ A \ { 0 } a,b,d\in A\backslash \{0\} a,b,dA\{0}; we say that d d d is a greatest common divisor (abbreviated gcd) of a a a and b b b, if a , b ∈ d A a,b \in dA a,bdA and if for all c ∈ A c\in A cA with a , b ∈ c A a,b\in cA a,bcA, we have d ∈ c A d\in cA dcA. Symmetrically, e ∈ A e\in A eA is a smaller common multiple (abbreviated lcm) of a a a and b b b if e ∈ A a ⋂ A b e\in Aa\bigcap Ab eAaAb and if for all x ∈ A a ⋂ A b x\in Aa\bigcap Ab xAaAb we have x ∈ A e x\in Ae xAe;i.e. A e = A a ⋂ A b Ae=Aa\bigcap Ab Ae=AaAb. Note that if A A A is integral, the gcd and the lcm of a a a and b b b, when they exist, are determined to the nearest multiplication of invertible elements: because if d d d and d ′ d' d are gcd of a a a and b b b, we have d ′ ∣ d d'|d dd and d ∣ d ′ d|d' dd, i.e. d = d ′ u , d ′ = d v d=d'u,d'=dv d=du,d=dv for some u , v ∈ A u,v \in A u,vA hence d = d u v d=duv d=duv, and therefore u v = 1 uv=1 uv=1, because A A A is integral; we reason the same for the lcm.
(iv) if $ A$ is integral and if lcm ( a , b ) (a,b) (a,b) exists, then lcm ( a , b ) (a,b) (a,b) exists, and we have:
g c d ( a , b ) ⋅ l c m ( a , b ) = a b gcd(a,b)\cdot lcm(a,b)=ab gcd(a,b)lcm(a,b)=ab
with multiplication of invertible elements near, i.e. if e e e is a lcm of a a a and b b b, then e − 1 a b ∈ A e^{-1}ab\in A e1abA is gcd of a a a and b b b: indeed, there exists d ∈ A d\in A dA such that a b = e d , ab=ed, ab=ed, and since on the one hand a ∣ e a|e ae, it follows that d ∣ b d|b db, and on the other hand, b ∣ e b|e be, therefore d ∣ a d|a da too. Now, if c c c divides a a a and b b b, say a = c x , b = c y , a=cx,b=cy, a=cx,b=cy, we see that c x y cxy cxy is a common multiple of a a a and b b b. therefore e ∣ c x y e|cxy ecxy, and of e d = c ⋅ c x y ed=c\cdot cxy ed=ccxy it comes that c ∣ d c|d cd, as wished. (On the other hand, the existence of the gcd does not entail that of the lcm: see Remark 1.111 ).
(v) if A A A is factorial, any pair ( a , b ) (a,b) (a,b) of non-zero elements of A A A admits a gcd and lcm. Indeed, thanks to (iv) it suffices to show the existence of the lcm; so let a = u p 1 ν 1 ⋯ p k ν k a=u p_{1}^{\nu_{1}} \cdots p_{k}^{\nu_{k}} a=up1ν1pkνk and b = v p 1 μ 1 ⋯ p k μ k b=v p_{1}^{\mu_{1}} \cdots p_{k}^{\mu_{k}} b=vp1μ1pkμk factorization with u , v ∈ A × u,v\in A^{\times} u,vA×, v i , u i ∈ N v_{i},u_{i}\in \mathbb N vi,uiN and p i p_{i} pi for all i = 1 , … , k i=1,\dots,k i=1,,k, with A p i ≠ A p j Ap_{i}\neq Ap_{j} Api=Apj for i ≠ j i\neq j i=j. Given (iii), we can easily see that ∏ i = 1 k p i max ⁡ ( ν i , μ i ) \prod_{i=1}^{k} p_{i}^{\max \left(\nu_{i}, \mu_{i}\right)} i=1kpimax(νi,μi) is a lcm of a a a and b b b; it is also deduced that ∏ i = 1 k p i min ⁡ ( ν i , μ i ) \prod_{i=1}^{k} p_{i}^{\min \left(\nu_{i}, \mu_{i}\right)} i=1kpimin(νi,μi) is a gcd of a a a and b b b: the details are left to the reader.

Exercise 1.9. (i) Show that every integral and main ring is factorial.
(ii) Show that the ring Z [ − 5 ] \mathbb Z[\sqrt{-5}] Z[5 ] is not factorial.
(iii) Let A A A be an integral ring; show that any pair of elements of A \ { 0 } A\backslash \{0\} A\{0} admits a gcd ⇔ \Leftrightarrow any pair of elements of A \ { 0 } A\backslash \{0\} A\{0} admits a lcm.

With exercise 1.9 (i) and example 1.1 we see that Z \mathbb Z Z is factorial, and similarly for K [ X ] K[X] K[X], if K K K is an arbitrary field. The prime elements of Z \mathbb Z Z are obviously the usual integers; the first K [ X ] K [X] K[X] are the irreducible polynomials, i.e. the P ∈ K [ X ] P \in K[X] PK[X] with d : = d e g X P > 0 d:= deg_X P> 0 d:=degXP>0, which are not products of polynomials of d e g r e e s < d degrees<d degrees<d. In both cases, the key point of the proof is the existence of a Euclidean division for any pair of non-zero elements; the following problem axiomatizes the properties required to reproduce this argument:

Problem 1.10. Ring A A A is said to be Euclidean if it is integral and there is an application
∣ ⋅ ∣ : A \ { 0 } → N |\cdot|: A \backslash\{0\} \rightarrow \mathbb{N} :A\{0}N
satisfying the following condition:

–for all $a, b \in A \backslash {0} $ there exists $q,r\in A $ such that $a = bq + r $ and either r = 0 r = 0 r=0, or ∣ r ∣ < ∣ b ∣ | r | <| b | r<b (Euclidean division of a a a by b b b).
(i) Show that any Euclidean ring is principal (and therefore, factorial).
(ii) Show that Z [ i n ] \mathbb Z [i \sqrt{n} ] Z[in ] is a Euclidean ring for n = 1 , 2 n = 1,2 n=1,2.
(iii) The rest of the problem is devoted to a classical arithmetic application of the ring Z [ i ] \mathbb{Z}[i] Z[i] of Gauss integers. First, let p ∈ N p \in \mathbb{N} pN be a prime number with p ≡ 1 (   m o d   4 ) p \equiv 1(\bmod 4) p1(mod4). Show that there exists x ∈ Z x \in \mathbb{Z} xZ such that x 2 ≡ − 1 (   m o d   p ) x^{2} \equiv-1(\bmod p) x21(modp).
(iv) Deduce from (ii) and (iii) the following Fermat Theorem: Let p ∈ N p \in \mathbb{N} pN be an odd prime number; then p is the sum of two squares p = a 2 + b 2 p=a^{2}+b^{2} p=a2+b2 of integers a , b ∈ N a, b \in \mathbb{N} a,bN if and only if p ≡ 1 (   m o d   4 ) p \equiv 1(\bmod 4) p1(mod4).

更多推荐

一点代数学(可能长期更新)