这一节先说了一些多项式整除的结论(Theorem 4)和多项式空间中的Taylor公式(Theorem 5),Theorem 6揭示了多项式的根的multiplicity和求导算子D之间的关系。
下一部分引入的是ideal,Theorem 7证明了任何一个ideal都由唯一一个monic polynomial生成,通过这一定理的推论可以得到最大公约数(greatest common divisor)的概念,用ideal的generator引入g.c.d.是一个很有意思的做法,看起来不好理解,但实际计算时也会方便,由于所考虑的ideal是形如 p 1 F [ x ] + ⋯ + p n F [ x ] p_1F[x]+\cdots+p_nF[x] p1F[x]++pnF[x]的组合,g.c.d.是这个ideal的monic generator,那么只要找到在此ideal中的任何一个多项式,g.c.d.一定比此多项式低阶。

Exercises

1.Let Q Q Q be the field of rational numbers. Determing which of the following subsets of Q [ x ] Q[x] Q[x] are ideals. When the set is an ideal, find its monic generator.
( a ) all f f f of even degree;
( b ) all f f f of degree ≥ 5 \geq 5 5;
( c ) all f f f such that f ( 0 ) = 0 f(0)=0 f(0)=0;
( d ) all f f f such that f ( 2 ) = f ( 4 ) = 0 f(2)=f(4)=0 f(2)=f(4)=0;
( e ) all f f f in the range of the linear operator T T T defined by
T ( ∑ i = 0 n c i x i ) = ∑ i = 0 n c i i + 1 x i + 1 T\left(\sum_{i=0}^nc_ix^i\right)=\sum_{i=0}^n\frac{c_i}{i+1}x^{i+1} T(i=0ncixi)=i=0ni+1cixi+1
Solution:
( a ) No. As g = x 2 g=x^2 g=x2 is in this set, but x g = x 3 xg=x^3 xg=x3 is not.
( b ) No. As f = x 5 + x 2 f=x^5+x^2 f=x5+x2 and g = x 5 g=x^5 g=x5 are in this set, but f − g = x 2 f-g=x^2 fg=x2 is not.
( c ) Yes, its monic generator is d = x d=x d=x.
( d ) Yes, its monic generator is d = ( x − 2 ) ( x − 4 ) d=(x-2)(x-4) d=(x2)(x4).
( e ) Yes, its monic generator is d = x d=x d=x.

2.Find the g.c.d. of each of the following pairs of polynomials
( a ) 2 x 5 − x 3 − 3 x 2 − 6 x + 4 , x 4 + x 3 − x 2 − 2 x − 2 2x^5-x^3-3x^2-6x+4,x^4+x^3-x^2-2x-2 2x5x33x26x+4,x4+x3x22x2;
( b ) 3 x 4 + 8 x 2 − 3 , x 3 + 2 x 2 + 3 x + 6 3x^4+8x^2-3,x^3+2x^2+3x+6 3x4+8x23,x3+2x2+3x+6;
( c ) x 4 − 2 x 3 − 2 x 2 − 2 x − 3 , x 3 + 6 x 2 + 7 x + 1 x^4-2x^3-2x^2-2x-3,x^3+6x^2+7x+1 x42x32x22x3,x3+6x2+7x+1.

Solution:
( a ) If we let f = 2 x 5 − x 3 − 3 x 2 − 6 x + 4 , g = x 4 + x 3 − x 2 − 2 x − 2 f=2x^5-x^3-3x^2-6x+4,g=x^4+x^3-x^2-2x-2 f=2x5x33x26x+4,g=x4+x3x22x2, and denote M = f F [ x ] + g F [ x ] M=fF[x]+gF[x] M=fF[x]+gF[x], then
f − ( 2 x − 2 ) g = 3 x 3 − x 2 − 6 x ∈ M x ( 3 x 3 − x 2 − 6 x ) − 3 g = − 4 x 3 − 3 x 2 + 6 x + 6 ∈ M f-(2x-2)g=3x^3-x^2-6x\in M \\ x(3x^3-x^2-6x)-3g=-4x^3-3x^2+6x+6\in M f(2x2)g=3x3x26xMx(3x3x26x)3g=4x33x2+6x+6M
combined we get − 13 x 2 − 6 x + 18 ∈ M -13x^2-6x+18\in M 13x26x+18M, similarly we can see 31 x 2 + 14 x ∈ M 31x^2+14x\in M 31x2+14xM, continue these steps we shall find f f f and g g g are relatively prime.
( b ) Since 3 x 4 + 8 x 2 − 3 = ( 3 x 2 − 1 ) ( x 2 + 3 ) 3x^4+8x^2-3=(3x^2-1)(x^2+3) 3x4+8x23=(3x21)(x2+3) and x 3 + 2 x 2 + 3 x + 6 = ( x + 2 ) ( x 2 + 3 ) x^3+2x^2+3x+6=(x+2)(x^2+3) x3+2x2+3x+6=(x+2)(x2+3), we see x 2 + 3 x^2+3 x2+3 divides both polynomials and further
1 11 ( 3 x 4 + 8 x 2 − 3 ) + 6 − 3 x 11 ( x 3 + 2 x 2 + 3 x + 6 ) = x 2 + 3 \frac{1}{11}(3x^4+8x^2-3)+\frac{6-3x}{11}(x^3+2x^2+3x+6)=x^2+3 111(3x4+8x23)+1163x(x3+2x2+3x+6)=x2+3
the desired g.c.d is x 2 + 3 x^2+3 x2+3.
( c ) A similar procedure can show they are relatively prime.

3.Let A A A be an n × n n\times n n×n matrix over a field F F F. Show that the set of all polynomials f ∈ F [ x ] f\in F[x] fF[x] such that f ( A ) = 0 f(A)=0 f(A)=0 is an ideal.
Solution: Let M = { f ∈ F [ x ] : f ( A ) = 0 } M=\{f\in F[x]:f(A)=0\} M={fF[x]:f(A)=0}, then if f , g ∈ M f,g\in M f,gM, then for any c ∈ F c\in F cF we have
( c f + g ) ( A ) = c f ( A ) + g ( A ) = 0 ⇒ c f + g ∈ M (cf+g)(A)=cf(A)+g(A)=0\Rightarrow cf+g\in M (cf+g)(A)=cf(A)+g(A)=0cf+gM
also if g ∈ M g\in M gM, then g ( A ) = 0 g(A)=0 g(A)=0, and for any f ∈ F [ x ] f\in F[x] fF[x], we have ( f g ) ( A ) = f ( A ) g ( A ) = f ( A ) 0 = 0 (fg)(A)=f(A)g(A)=f(A)0=0 (fg)(A)=f(A)g(A)=f(A)0=0, so f g ∈ M fg\in M fgM.

4.Let F F F be a subfield of complex numbers, and let A = [ 1 − 2 0 3 ] A=\begin{bmatrix}1&-2\\0&3\end{bmatrix} A=[1023]. Find the monic generator of the ideal of all polynomials f f f in F [ x ] F[x] F[x] such that f ( A ) = 0 f(A)=0 f(A)=0.
Solution: Since A 2 = [ 1 − 8 0 9 ] A^2=\begin{bmatrix}1&-8\\0&9\end{bmatrix} A2=[1089], we see
A 2 − 4 A + 3 I = [ 1 − 8 0 9 ] − 4 [ 1 − 2 0 3 ] + 3 [ 1 0 0 1 ] = [ 0 0 0 0 ] A^2-4A+3I=\begin{bmatrix}1&-8\\0&9\end{bmatrix}-4\begin{bmatrix}1&-2\\0&3\end{bmatrix}+3\begin{bmatrix}1&0\\0&1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} A24A+3I=[1089]4[1023]+3[1001]=[0000]
thus the polynomial f = x 2 − 4 x + 3 f=x^2-4x+3 f=x24x+3 is in the ideal. As no polynomial g g g of degree 1 can make g ( A ) = 0 g(A)=0 g(A)=0 and f f f is monic, f f f is the result.

5.Let F F F be a field. Show that the intersection of any number of ideals in F [ x ] F[x] F[x] is an ideal.
Solution: Let { M α } \{M_{\alpha}\} {Mα} be any number of ideals in F [ x ] F[x] F[x], and M = ∩ α M α M=\cap_{\alpha}M_{\alpha} M=αMα.
First let f , g ∈ M , c ∈ F f,g\in M,c\in F f,gM,cF, then f , g ∈ M α f,g\in M_{\alpha} f,gMα for all α \alpha α, thus c f + g ∈ M α cf+g\in M_{\alpha} cf+gMα for all α \alpha α, and c f + g ∈ M cf+g\in M cf+gM, and M M M is a subspace of F [ x ] F[x] F[x].
Next let f ∈ F [ x ] f\in F[x] fF[x] and g ∈ M g\in M gM, then g ∈ M α g\in M_{\alpha} gMα for all α \alpha α, as M α M_{\alpha} Mα is an ideal, we see f g ∈ M α fg\in M_{\alpha} fgMα for all α \alpha α, which means f g ∈ M fg\in M fgM. This shows M M M is an ideal.

6.Let F F F be a field. Show that the ideal generated by a finite number of polynomials f 1 , … , f n f_1,\dots,f_n f1,,fn in F [ x ] F[x] F[x] is the intersection of all ideals containing f 1 , … , f n f_1,\dots,f_n f1,,fn.
Solution: Let M M M be the intersection of all ideals containing f 1 , … , f n f_1,\dots,f_n f1,,fn. From Exercise 5 we know M M M is an ideal which contains f 1 , … , f n f_1,\dots,f_n f1,,fn, thus contains f 1 F [ x ] + ⋯ + f n F [ x ] f_1F[x]+\cdots+f_nF[x] f1F[x]++fnF[x]. On the other hand, f 1 F [ x ] + ⋯ + f n F [ x ] f_1F[x]+\cdots+f_nF[x] f1F[x]++fnF[x] is an ideal containing f 1 , … , f n f_1,\dots,f_n f1,,fn, thus shall contain M M M.

7.Let K K K be a subfield of a field F F F, and suppose f , g f,g f,g are polynomials in K [ x ] K[x] K[x]. Let M K M_K MK be the ideal generated by f f f and g g g in K [ x ] K[x] K[x] and M F M_F MF be the ideal they generate in F [ x ] F[x] F[x]. Show that M K M_K MK and M F M_F MF have the same monic generator.
Solution: Let d K , d F d_K,d_F dK,dF be the monic generator of M K M_K MK and M F M_F MF, then there is p , q ∈ K [ x ] p,q\in K[x] p,qK[x] such that d K = f p + g q d_K=fp+gq dK=fp+gq, since K K K is a subfield of F F F, p , q ∈ F [ x ] p,q\in F[x] p,qF[x] as well, thus d K ∈ M F d_K\in M_F dKMF,so d K = h d F d_K=hd_F dK=hdF for some h ∈ F [ x ] h\in F[x] hF[x]. Since d K d_K dK divides f f f and g g g in F F F, by Corollary of Theorem 7 we know d F d_F dF is divisible by d K d_K dK, so d F = h ′ d K d_F=h'd_K dF=hdK for some h ′ ∈ F [ x ] h'\in F[x] hF[x]. Now we have
( d K = h d F = h h ′ d K ) ⇒ ( h h ′ = 1 ) ⇒ ( h = h ′ = 1 ) ⇒ ( d K = d F ) (d_K=hd_F=hh'd_K)\Rightarrow(hh'=1)\Rightarrow(h=h'=1)\Rightarrow(d_K=d_F) (dK=hdF=hhdK)(hh=1)(h=h=1)(dK=dF)

更多推荐

4.4 Polynomial Ideals